TAG Rubric

The purpose of this guide is to provide a range of knowledge at which students can demonstrate proficiency for each objective. Subsequent college course success depends strongly on courses taught primarily at the "some applied skills present" and "applied skills strongly demonstrated" levels.

	Objective	Applied skills strongly	Some applied skills	Little applied skills	Minimal applied skills
		demonstrated	demonstrated	demonstrated	
1.	Identify and describe electrical components and quantities.*	Solve unit conversion problems.	Solve problems using engineering notation and metric prefixes.	Express measured data with the proper number of significant digits.	Discuss the SI standard. Identify the symbol for an electrical component. Define/Explain: Schematic symbols.
					variable symbols, units, prefixes.
					components and value.
					a metric prefix to another.
					Use engineering notation and metric prefixes to represent large and small quantities.
					Explain the concept of significant digits.
2.	Definitions of voltage, current, electrical resistance	Calculate power theoretically and based on circuit measurements.	Perform circuit measurements using lab equipment of voltage,	Interpret a standard resistor code.	Define voltage, resistance, current, and power.
	and power.*		current and resistance.	Discuss the characteristics of power supplies and batteries.	

Working document. Last revised May 21, 2013.

P a g e |**1**

TAG Rubric

The purpose of this guide is to provide a range of knowledge at which students can demonstrate proficiency for each objective. Subsequent college course success depends strongly on courses taught primarily at the "some applied skills present" and "applied skills strongly demonstrated" levels.

3.	Ohm's law, electrical	Design, build and test a	Describe the relationship	Calculate current, voltage	Define Ohm's law.
	energy and power.*	circuit to achieve a specific	between voltage current and	and resistance in a simple	
		current, resistance or	resistance.	circuit.	Define electrical energy.
		voltage.			
			Measure voltage current and	Calculate electrical power	Define electrical power.
		Calculate energy	resistance in a simple	and energy for a simple	
		consumption.	circuit.	circuit.	
		Select resistors based on	Calculate electrical power		
		power considerations.	for a basic circuit.		
4.	Series circuit	Apply the voltage divider	Compute DC series circuits	Recognize series	Define series circuit
	analysis (Apply	rule.	(voltages, current, power).	combinations of	
	Ohm's and			components from schematic	State Kirchhoff's Voltage
	Kirchhoff's Laws to	Design, build and test an	Take measurements of DC	diagrams.	law.
	series circuits.)*	unloaded voltage divider	series circuits.		
		circuit.		Apply Ohm's Law in a	
			Compute power in and	series circuit to each	
		Construct a circuit and	power out.	component and combination	
		measure voltage with		of components.	
		respect to ground.	Apply Kirchhoff's Voltage		
			Law.	Recognize series-aiding and	
		Troubleshoot series circuits,		series-opposing multiple	
		opens and shorts.	Verify current is the same	source circuits.	
			through all components.		
		Construct and analyze			
		series-aiding and series-	Compute voltages in series-		
		opposing multiple source	aiding and series-opposing		
		circuits.	multiple source circuits.		

Working document. Last revised May 21, 2013.

TAG Rubric

The purpose of this guide is to provide a range of knowledge at which students can demonstrate proficiency for each objective. Subsequent college course success depends strongly on courses taught primarily at the "some applied skills present" and "applied skills strongly demonstrated" levels.

5.	Parallel circuit	Apply the current divider	Compute DC parallel	Recognize parallel	Define parallel circuit
	analysis*	rule	circuits (voltages, current,	combinations of	
			power).	components from	State Kirchhoff's Current
		Design, build, and test a		schematic diagrams.	law
		current divider circuit.	Take measurements of		
			DC parallel circuits.	Determine total parallel	Determine total parallel
		Construct a circuit and	_	resistance with three or	resistance with two
		measure voltage with	Compute power in and	more resistors.	resistors in parallel
		respect to ground.	power out.		resistors in parallel.
			1	Apply Ohm's Law in a	
		Troubleshoot parallel	Apply Kirchhoff's Current	parallel circuit to each	
		circuits, opens and shorts.	Law to solve a simple	component and combination	
			circuit.	of components.	
		Construct and analyze			
		parallel multiple source	Verify voltage is the same	Recognize parallel multiple	
		circuits.	across all parallel	source circuits.	
		Analyza the internal	components.		
		resistance of single and			
		multiple source circuits.	Compute current in a		
			circuit		
6	Series-parallel circuit	Analyze by calculation	Analyze by calculation	Determine total	Recognize series-parallel
0.	analysis*	using the collapse and	using the collapse and	equivalent resistance for a	circuits
	j	expand method for a 3	expand method for a 2	series-parallel circuit	circuits.
		plus loop circuit	loop circuit	series parallel elleun.	Recognize a ladder
		pius loop encuit.	loop encure.		network
		Analyze using simulation	Analyze ladder networks		network.
		Anaryze using simulation.	Analyze ladder networks.		Recognize a balanced
		Design build and test a	Analyze a balanced		Recognize a balanced
		Design, bund, and test a	Wheatstone bridge		
			i incarbiolie ollage.		1

Working document. Last revised May 21, 2013.

Page | 3

TAG Rubric

The purpose of this guide is to provide a range of knowledge at which students can demonstrate proficiency for each objective. Subsequent college course success depends strongly on courses taught primarily at the "some applied skills present" and "applied skills strongly demonstrated" levels.

		loaded voltage divider.			Wheatstone bridge.
		Analyze the loading effect of a meter on a circuit.			
7.	Circuit theorems	Lab exercise or computer	Calculate the equivalent	Perform source conversions	Define the concept of
	(Superposition,	simulation to prove	Thevenin and/or Norton	(current to voltage; voltage	equivalent circuits and
	Thevenin's and Norton's theorems)*	Thevenin and/or Norton theorem.	circuit.	to current).	internal resistance.
		Lab exercise or computer simulation to prove Superposition theorem.	Convert a Norton circuit to a Thevenin circuit and Thevenin circuit to Norton circuit.	Calculate the voltages and current in a multi-source series-parallel circuit.	Define superposition, Thevenin's, and Norton's theorems.
		Lab exercise or computer	Calculate circuit voltages &		Define Maximum Power
		simulation to prove	currents using		
		Maximum Power Transfer theorem.	Superposition.		
			Calculate resistances for Maximum Power Transfer.		
8.	Mesh and/or nodal	Apply Mesh or Nodal	Apply Mesh or Nodal	Write Mesh equations for a	Describe the procedure used
	analysis techniques*	Analysis Techniques to find	Analysis Techniques to find	simple circuit with two	in the Mesh or Nodal
		currents through and	currents through and	loops or write nodal	Analysis Techniques.
		voltage drops across all	voltage drops across all	equations for a simple	
		circuit (three or more	(two loops)	circuit with two nodes.	Kecognize which of
			(100 100 ps).	Recognize when source	applied in each analysis
		100000	Verify results by applying	conversion is necessary and	technique
		Lab exercise or computer	Kirchhoff's Laws.	perform source conversion.	
		simulation to validate Mesh		1	

Working document. Last revised May 21, 2013.

Page | 4

TAG Rubric

The purpose of this guide is to provide a range of knowledge at which students can demonstrate proficiency for each objective. Subsequent college course success depends strongly on courses taught primarily at the "some applied skills present" and "applied skills strongly demonstrated" levels.

	or Nodel englysis			
	of Notal analysis			
	Varify regults by applying			
	Verify results by applying			
	Kirchnoff's Laws.			
9. Properties of	Apply and verify the	Analyze series and parallel	Describe dielectric	Define capacitance
capacitors and their	universal time constant	connections of capacitors	characteristics	
behavior under DC	curve in an R-C circuit.			Describe basic construction
conditions*		Calculate capacitance from	Describe voltage and	and characteristics of a
	Observe R-C transient	physical characteristics of a	current in steady state	capacitor
	circuits with	capacitor.	condition of an R-C circuit.	-
	instrumentation.	*		Identify and discuss various
		Perform calculations using	Describe/plot current and	types of capacitors
	Solve for voltage, current.	the universal time constant	voltage in a transient circuit.	JI III IIII
	and time in an RC circuit	curve	· · · · · · · · · · · · · · · · · · ·	Define charge charge
	using exponential equations		Calculate charge on a	storage and discuss voltage
		Calculate energy stored in a	capacitor	as force
		capacitor	capacitor.	as force.
		capacitor	Describe encuere stored in a	Identify and discuss the
			Describe energy stored in a	Identify and discuss the
		Calculate the Voltage and	capacitor	universal time constant
		Current in an R-C circuit		curve
		at τ , 2τ , 3τ , 4τ and 5τ	Calculate time constant of	
			an R-C circuit	
10. Properties of	Apply and verify the	Analyze series and parallel	Describe voltage and	Define inductance.
inductors and their	universal time constant	connections of inductors.	current in steady state	
behavior under DC	curve in an R-L circuit.		condition of an R-L circuit.	Define the basic
conditions*		Calculate inductance from		construction of an
	Observe R-L transient	physical characteristics of	Describe/plot current and	inductor
	circuits with	an inductor.	voltage in a transient circuit.	
	instrumentation.		_	Identify and discuss are interested
		Perform calculations using	Calculate induced voltage	identify and discuss various

Working document. Last revised May 21, 2013.

Page |5

TAG Rubric

The purpose of this guide is to provide a range of knowledge at which students can demonstrate proficiency for each objective. Subsequent college course success depends strongly on courses taught primarily at the "some applied skills present" and "applied skills strongly demonstrated" levels.

Solve for voltage, current, and time in an R-L circuit	the universal time constant curve.	during a collapsing magnetic field.	types of inductors.
using exponential equations. Calculate mutual inductance.	Calculate energy stored in an inductor.	Describe energy stored in an inductor.	List the factors that affect the strength of the magnetic field.
	Calculate the Voltage and Current in an R-L circuit at τ , 2τ , 3τ , 4τ and 5τ .	Calculate the time constant of an R-L circuit.	Identify and discuss the universal time constant curve.

Working document. Last revised May 21, 2013.